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ABSTRACT 

Six research projects supported by this grant during the final year have resulted in one 
published book chapter, two refereed articles in press, three articles under review, and one 
refereed conference publication. Areas of research included design and simulation of network 
architectures for: (1) motion perception; (2) brightness perception; (3) spatial pooling and 
perceptual framing by synchronized cortical dynamics; (4) binocular disparity processing; 
(5) synthetic aperture radar processing by a multiple scale neural system for boundary and 
surface representation; and (6) perception of lightness in 3-D curved objects. 

In all, the grant supported: 

9 refereed publications; 

9 refereed conference articles; 
3 book chapters; 

4 articles currently under review. 



TABLE OF CONTENTS 

List of Publications 4 

Research Summaries 7 

1. Motion Perception 7 
2. Brightness Perception 7 
3. Spatial Pooling and Perceptual Framing 7 

by Synchronized Cortical Dynamics 
4. Binocular Disparity Processing 8 
5. Synthetic Aperture Radar Processing by a Multiple Scale 8 

Neural System for Boundary and Surface Representation 
6. Perception of Lightness in 3-D Curved Objects 9 

Student Support 10 

Appendix A: Year 1 Research Summaries 11 

Appendix B: Year 2 Research Summaries 16 



PUBLICATIONS PARTIALLY SUPPORTED BY 
CONTRACT AFOSR F49620-92-J-0334 

SEPTEMBER 1, 1992—AUGUST 31, 1995 

(The relevant project year is indicated at the end of each citation) 

ARTICLES 

1. Asfour, Y.R., Carpenter, G.A., Grossberg, S., and Lesher, G.W. (1993). Fusion ART- 
MAP: A neural network architecture for multi-channel data fusion and classification. 
Technical Report CAS/CNS-TR-93-006, Boston University. In Proceedings of 
the world congress on neural networks, Portland, II, 210-215. Hillsdale, NJ: 
Erlbaum Associates. (%@+*) [Year 1] 

2. Carpenter, G.A., Grossberg, S., and Lesher, G.W. (1993). The what-and-where filter: A 
spatial mapping neural network for object recognition and image understanding. Tech- 
nical Report CAS/CNS-TR-93-043, Boston University. Submitted for publication. 
(%@+*) [Year 1] 

3. Chey, J., Grossberg, S., and Mingolla, E. (1994). Neural dynamics of motion process- 
ing and speed discrimination. Technical Report CAS/CNS-TR-94-030, Boston 
University. Submitted for publication. (&%+*) [Year 3] 

4. Chey, J. and Mingolla, E. (1994). Global motion configuration can override local motion 
contrast. Technical Report CAS/CNS-TR-94-029, Boston University. Submitted 
for publication. (%+*) [Year 3] 

5. Francis, G., Grossberg, S., and Mingolla, E. (1993). Dynamic formation and reset of 
coherent visual segmentations by neural networks. In Artificial neural networks for 
speech and vision. London: Chapman and Hall, pp. 474-501. (&%+*)[Year 1] 

6. Francis, G., Grossberg, S., and Mingolla, E. (1994). Cortical dynamics of feature binding 
and reset: Control of visual persistence. Vision Research, 34, 1089-1104. (&%+*) 
[Year 1] 

7. Gove, A., Grossberg, S., and Mingolla, E. (1993). Brightness perception, illusory con- 
tours, and corticogeniculate feedback. In Proceedings of the world congress on neu- 
ral networks, Portland, I, 25-28. Hillsdale, NJ: Erlbaum Associates. (&%*) [Year 1] 

8. Gove, A., Grossberg, S., and Mingolla, E. (1995). Brightness perception, illusory con- 
tours, and corticogeniculate feedback. Technical Report CAS/CNS-TR-94-033, 
Boston University. Visual Neuroscience, 12, 1027-1052. (&%*) [Year 3] 

9. Grossberg, S. and Grunewald, A. (1994). Spatial pooling and perceptual framing by 
synchronizing cortical dynamics. In M. Marinaro and P.G. Morasso (Eds.), Proceedings 
of the European conference on artificial neural networks (ICANN-94). New 
York: Springer-Verlag, pp. 10-15. (%*) [Year 2] 

10. Grossberg, S. and Grunewald, A. (1994). Synchronized neural activities: A mechanism 
for perceptual framing. In Proceedings of the world congress on neural networks, 
San Diego, IV, 655-660. Hillsdale, NJ: Erlbaum Associates. (&%*) [Year 2] 



11. Grossberg, S. and Grunewald, A. (1995). Temporal dynamics of binocular disparity 
processing by corticogeniculate interactions. Technical Report CAS/CNS-TR-95- 
021, Boston University. Submitted for publication. (&%*) [Year 3] 

12. Grossberg, S. and Grunewald, A. (1996). Cortical synchronization and perceptual fram- 
ing. Technical Report CAS/CNS-TR-94-025, Boston University. Journal of Cog- 
nitive Neuroscience, in press. (&%*) [Year 3] 

13. Grossberg, S. and Mingolla, E. (1994). Visual motion perception. In V.S. Ramachandran 
(Ed.), Encyclopedia of human behavior, Volume 4. New York: Academic Press, 
pp. 469-486. (%*) [Year 2] 

14. Grossberg, S., Mingolla, E., and Ross, W.D. (1994). A neural theory of attentive visual 
search: Interactions of visual, spatial, and object representations. Psychological Review, 
101, 470-489. (&%+*) [Year 1] 

15. Grossberg, S., Mingolla, E., and Williamson, J. (1993). Processing of synthetic and 
aperture radar images by a multiscale Boundary Contour System and Feature Contour 
System. In Proceedings of the world congress on neural networks, Portland, III, 
785-788. Hillsdale, NJ: Erlbaum Associates, (&%*) [Year 1] 

16. Grossberg, S., Mingolla, E., and Williamson, J. (1995). Synthetic aperture radar pro- 
cessing by a multiple scale neural system for boundary and surface representation. Tech- 
nical Report CAS/CNS-TR-94-001, Boston University. Neural Networks (Special 
Issue on Automatic Target Recognition), 8, 1005-1028. (&%+*) [Year 2] 

17. Grossberg, S., Mingolla, E., and Williamson, J. (1995). A multiple scale neural system 
for boundary and surface representation of SAR data. In Proceedings of the IEEE 
workshop on neural networks for signal processing. New York: IEEE Publishing 
Services, in press. (k%+<&) [Year 3] 

18. Grossberg, S. and Olson, S.J. (1994). Rules for the cortical map of ocular dominance 
and orientation columns. JVeural Networks, 7, 883-894. (%@+*) [Year 2] 

19. Grunewald, A. (1994). A neuron model with variable ion concentrations. In Proceed- 
ings of the world congress on neural networks, San Diego, IV, 368-372. Hillsdale, 
NJ: Erlbaum Associates. (&) [Year 2] 

20. Grunewald, A. and Grossberg, S. (1994). Binding of object representations by syn- 
chronous cortical dyamics explains temporal order and spatial pooling data. In A. Ram 
and K. Eiselt (Eds.), Proceedings of the sixteenth annual conference of the 
Cognitive Science Society. Hillsdale, NJ: Erlbaum Associates, pp. 387-391. (&%*) 
[Year 2] 

21. Lesher, G.W. and Mingolla, E. (1993). The role of edges and line-ends in illusory contour 
formation. Vision Research, 33, 2253-2270. (&+*) [Year 1] 

22. Lesher, G.W. and Mingolla. E. (1995). Illusory contour formation. In M.A. Arbib (Ed.), 
Handbook of brain theory and neural networks. New York: Academic Press, 
pp. 481-482. (+*) [Year 3] 

23. Mingolla, E., Neumann, H., and Pessoa, L. (1994). A multi-scale network model of 
brightness perception. In Proceedings of the world congress on neural networks, 
San Diego, IV, 299-306. (*) [Year 2] 



24. Pessoa, L., Mingolla, E., and Arend, L. (1995). The perception of lightness in 3-D curved 
objects. Perception and Psychophysics, in press. (*) [Year 3] 

25. Pessoa, L., Mingolla, E., and Neumann, H. (1995). A contrast and luminance-drive 
multiscale network model of brightness perception. Technical Report CAS/CNS- 
TR-94-017, Boston University. Vision Research, 35, 2201-2223. (*) [Year 2] 

k Also supported in part by the Air Force Office of Scientific Research [expired]. 
% Also supported in part by the Advanced Research Projects Agency [expired]. 
@ Also supported in part by British Petroleum [expired]. 
+ Also supported in part by the National Science Foundation. 
* Also supported in part by the Office of Naval Research. 



RESEARCH SUMMARIES 

1. Motion Perception [Articles 3 and 4] 

How is the perceived direction of motion of a target affected by the motion of multiple 
surrounding regions? Observers viewed displays consisting of three nested regions, a circular 
target region surrounded by two concentric annuli, each containing coherently moving dots. 
The observers' task was to estimate the direction of motion of the dots in the central re- 
gion. By itself, motion in either annulus can alter this estimate, producing a contrast effect 
whereby the perceived direction of the center is biased away from the direction of motion of 
the annulus. In combination, the outer annulus dominated the inner in its effect on the tar- 
get's motion. This result suggests that local operators, such as antagonistic center-surround 
mechanisms for motion direction, are in themselves insufficient to explain relative motion 
effects. 

2. Brightness Perception [Article 8] 

A neural network model is developed to explain how visual thalamocortical interactions 
give rise to boundary percepts such as illusory contours and surface percepts such as filled-in 
brightnesses. Top-down feedback interactions are needed in addition to bottom-up feed- 
forward interactions to simulate these data. One feedback loop is modeled between lateral 
geniculate nucleus (LGN) and cortical area VI, and another within cortical areas VI and V2. 
The first feedback loop realizes a matching process which enhances LGN cell activities that 
are consistent with those of active cortical cells, and suppresses LGN activities that are not. 
This corticogeniculate feedback, being endstopped and oriented, also enhances LGN ON cell 
activations at the ends of thin dark lines, thereby leading to enhanced cortical brightness per- 
cepts when the lines group into closed illusory contours. The second feedback loop generates 
boundary representations, including illusory contours, that coherently bind distributed cor- 
tical features together. Brightness percepts form within the surface representations through 
a diffusive filling-in process that is contained by resistive gating signals from the boundary 
representations. The model is used to simulate illusory contours and surface brightnesses in- 
duced by Ehrenstein disks, Kanizsa squares, Glass patterns, and cafe wall patterns in single 
contrast, reverse contrast, and mixed contrast configurations. These examples illustrate how 
boundary and surface mechanisms can generate percepts that are highly context-sensitive, 
including how illusory contours can be amodally recognized without being seen, how model 
simple cells in VI respond preferentially to luminance discontinuities using inputs from both 
LGN ON and OFF cells, how model bipole cello in V2 with two colinear receptive fields 
can help to complete curved illusory contours, how short-range simple cell groupings and 
long-range bipole cell groupings can sometimes generate different outcomes, and how model 
double opponent, filling-in and boundary segmentation mechanisms in V4 interact to gener- 
ate surface brightness percepts in which filling-in of enhanced brightness and darkness can 
occur before the net brightness distribution is computed by double opponent interactions. 

3. Spatial Pooling and Perceptual Framing by Synchronized Cortical Dynamics 
[Article 12] 

How does the brain group together different parts of an object into a coherent visual 
object representation?  Different parts of an object may be processed by the brain at dif- 



ferent rates and may thus become desynchronized. Perceptual framing is a process that 
resynchronizes cortical activities corresponding to the same retinal object. A neural network 
model is presented that is able to rapidly resynchronize desynchronized neural activities. 
The model provides a link between perceptual and brain data. Model properties quanti- 
tatively simulate perceptual framing data, including psychophysical data about temporal 
order judgments and the reduction of threshold contrast as a function of stimulus length. 
Such a model has earlier been used to explain data about illusory contour formation, texture 
segregation, shape-from-shading, 3-D vision, and cortical receptive fields. The model hereby 
shows how many data may be understood as manifestations of a cortical grouping process 
that can rapidly resynchronize image parts which belong together in visual object represen- 
tations. The model exhibits better synchronization in the presence of noise than without 
noise, a type of stochastic resonance, and synchronizes robustly when cells that represent 
different stimulus orientations compete. These properties arise when fast long-range coop- 
eration and slow short-range competition interact via nonlinear feedback interactions with 
cells that obey shunting equations. 

4. Binocular Disparity Processing [Article 11] 

A neural model of binocular vision is developed to simulate psychophysical and neurobi- 
ological data, concerning the dynamics of binocular disparity processing. The model shows 
how feedforward and feedback interactions among LGN ON and OFF cells and cortical sim- 
ple, complex, and hypercomplex cells can simulate binocular summation, the Pulfrich effect, 
and the fusion of delayed anticorrelated stereograms. Model retinal ON and OFF cells are 
linked by an opponent process capable of generating antagonistic rebounds from OFF cells 
after offset of an ON cell input. Spatially displaced ON and OFF cells excite simple cells. 
Opposite polarity simple cells compete before their half-wave rectified outputs excite com- 
plex cells. Complex cells binocularly match like-polarity simple cell outputs before pooling 
half-wave rectified signals from opposite polarities. Competitive feedback among complex 
cells leads to sharpening of disparity selectivity and normalizes cell activity. Slow inhibitory 
interneurons help to reset complex cells after input offset. The Pulfrich effect occurs be- 
cause the delayed input from the one eye fuses with the present input from the other eye 
to create a disparity. Binocular summation occurs for stimuli of brief duration or of low 
contrast because competitive normalization takes time, and cannot occur for very brief or 
weak stimuli. At brief SOAs, anticorrelated stereograms can be fused because the rebound 
mechanism ensures that the present image to one eye can fuse with the afterimage from a 
previous image to the other eye. Corticogeniculate feedback embodies a matching process 
that enhances the speed and temporal accuracy of complex cell disparity tuning. Model 
mechanisms interact to control the stable development of sharp disparity tuning. 

5. Synthetic Aperture Radar Processing by a Multiple Scale Neural System for 
Boundary and Surface Representation [Article 16] 

An algorithm based on an improved Boundary Contour System (BCS) and Feature 
Contour System (FCS) neural network vision model is developed to process images containing 
range data gathered by synthetic aperture radar (SAR) sensor. BCS/FCS processing makes 
structures such as motor vehicles, roads, and buildings more salient and interpretable to 
human observers than they are in the original imagery. Early processing by ON cells and 
OFF cells embedded in shunting center-surround networks normalizes input dynamic range 



and performs local contrast enhancement. Combining ON cell and OFF cell output in the 
BCS to define oriented filters overcomes complementary processing deficiencies of each cell 
type and improves sensitivity to image contours. The oriented filters output to stages of 
short-range competition and long-range cooperation that segment the image into regions by 
cooperatively completing and regularizing the most favored boundaries while suppressing 
image noise and weaker boundary groupings. Boundary segmentation is performed by three 
copies of the BCS at small, medium, and large scales, whose interaction distances covary 
with the size of the scale. Filling-in of surface representations occurs within the FCS at 
each scale via a diffusion process. Diffusion is activated by the normalized FCS inputs and 
restricted to the compartments defined within each BCS boundary segmentation. The three 
scales of surface representation are then added to yield a final multiple-scale output. 

6. Perception of Lightness [Article 24] 

Lightness constancy requires the visual system to somehow "parse" the input scene into 
illumination and reflectance components. Experiments on the perception of lightness for 
3-D curved objects show that human observers are able to perform such a decomposition 
for some scenes but not for others. Lightness constancy is quite good when a rich local 
gray level context is provided. Deviations occurr when both illumination and reflectance 
changed along the surface of the objects. Does the perception of a 3-D surface and illuminant 
layout help calibrate lightness judgments? Results show a small but consistent improvement 
between lightness matches on ellipsoid shapes compared to flat rectangle shapes under similar 
illumination conditions. Illumination change over 3-D forms is therefore taken into account 
in lightness perception. 
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APPENDIX A 

YEAR 1 RESEARCH SUMMARIES 

1. Multichannel Data Fusion by a Self-Organizing Network for Recognition and 
Prediction 

Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or 
multi-sensor, data fusion. Single-channel Fusion ARTMAP is functionally equivalent to 
Fuzzy ART during unsupervised learning and to Fuzzy ARTMAP during supervised learn- 
ing. The network has a symmetric organization such that each channel can be dynamically 
configured to serve as either a data input or a teaching input to the system. An ART mod- 
ule forms a compressed recognition code within each channel. These codes, in turn, become 
inputs to a single ART system that organizes the global recognition code. When a predic- 
tive error occurs, a process called parallel match tracking simultaneously raises vigilances 
in multiple ART modules until reset is triggered in one of them. Parallel match tracking 
hereby resets only that portion of the recognition code with the poorest match, or minimum 
predictive confidence. This internally controlled selective reset process is a type of credit 
assignment that creates a parsimoniously connected learned network. Fusion ARTMAP's 
multi-channel coding is illustrated by simulations of the Quadruped Mammal database. 

2. Object Recognition and Image Understanding 

The What-and-Where filter forms part of a neural network architecture for spatial map- 
ping, object recognition, and image understanding. The Where filter responds to an image 
figure that has been separated from its background. It generates a spatial map whose cell 
activations simultaneously represent the position, orientation, and size of the figure (where it 
is). This spatial map may be used to direct spatially localized attention to these image fea- 
tures. A multiscale array of oriented detectors, followed by competitive interactions between 
position, orientation, and size scales, is used to define the Where filter. The Where filter 
may be used to transform the image figure into an invariant representation that is insensitive 
to the figure's original position, orientation, and size. This invariant figural representation 
forms part of a system devoted to attentive object learning and recognition (what it is). 
The Where spatial map of all the figures in an image, taken together with the invariant 
recognition categories that identify these figures, can be used to learn multidimensional rep- 
resentations of objects and their spatial relationships for purposes of image understanding. 
The What-and-Where filter is inspired by neurobiological data showing that a Where pro- 
cessing stream in the cerebral cortex is used for attentive spatial localization and orientation, 
whereas a What processing stream is used for attentive object learning and recognition. 

3. Processing of Synthetic Aperture Radar Images by a Multiscale Boundary 
Segmentation and Surface Representation Architecture 

A multiscale image processing algorithm based on the Boundary Contour System (BCS) 
and Feature Contour System (FCS) neural network models of preattentive vision, developed 
at Boston University's Center for Adaptive Systems and Department of Cognitive and Neural 
Systems, has been transferred to MIT's Lincoln Laboratory and applied to large images 
containing range data gathered by a synthetic aperture radar (SAR) sensor. Researchers at 
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Lincoln Laboratory have in turn supplied enhanced versions of that software to clients at 
other laboratories. The goal of the algorithm is to make structures such as motor vehicles, 
roads, or buildings more salient and more interpretable to human observers than they are 
in the original imagery. Early automatic gain control by shunting center-surround networks 
compresses signal dynamic range while performing local contrast enhancement. Subsequent 
processing by niters sensitive to oriented contrast, including short-range competition and 
long-range cooperation, segments the image into regions. The segmentation is performed 
by three "copies" of the BCS and FCS, of small, medium, and large scales, wherein the 
"short-range" and "long-range" interactions within each scale occur over smaller or larger 
image distances, corresponding to the size of the early filters of each scale. Finally, a diffusive 
filling-in operation within the segmented regions generates surface representations of visible 
structures. The combination of BCS and FCS helps to locate and enhance structure over 
regions of many pixels, without the resulting blur characteristic of approaches based on low 
spatial frequency filtering alone. 

4. Dynamic Reset of Boundary Segmentations in Response to Rapidly Changing 
Imagery 

An analysis of the reset of visual cortical circuits responsible for the binding or segmenta- 
tion of visual features into coherent visual forms yielded a model that explains properties of 
visual persistence described in Francis, Grossberg, and Mingolla (in press). The reset mech- 
anisms prevent massive smearing of visual percepts in response to rapidly moving images. 
The model simulates relationships among psychophysical data showing inverse relations of 
persistence to flash luminance and duration, greater persistence of illusory contours than real 
contours, a U-shaped temporal function for persistence of illusory contours, a reduction of 
persistence due to adaptation with a stimulus of like orientation, an increase of persistence 
due to adaptation with a stimulus of perpendicular orientation, and an increase of persistence 
with spatial separation of a masking stimulus. The model suggests that a combination of 
habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence. 

The model consists of the BCS with habituative chemical transmitters embedded at the 
interface of its complex cells and hypercomplex cells. Thus all the properties used in image 
processing applications of the BCS are retained in the present model, which provides the 
additional advantage of rapidly resetting only those boundary groupings of a processed scene 
which are changing in a time-varying environment. 

5. A Network Architecture to Rapidly Search and Detect Visual Targets in 
Clutter 

Visual search data were given a unified quantitative explanation by a model of how 
spatial maps in the parietal cortex and object recognition categories in the inferotemporal 
cortex deploy attentional resources as they reciprocally interact with visual representations 
in the prestriate cortex, as described in Grossberg, Mingolla, and Ross (in press). The 
model visual representations are organized into multiple boundary and surface representa- 
tions. Visual search in the model is initiated by organizing multiple items that lie within a 
given boundary or surface representation into a candidate search grouping. These items are 
compared with object recognition categories to test for matches or mismatches. Mismatches 
can trigger deeper searches and recursive selection of new groupings until a target object is 
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identified. This search model is algorithmically specified to quantitatively simulate search 
data using a single set of parameters, as well as to qualitatively explain a still larger data 
base, including data of Aks and Enns (1992), Bravo and Blake (1990), Chellazzi, Miller, 
Duncan, and Desimone (1993), Cohen and Ivry (1991), Egeth, Virzi, and Garbart (1984), 
Enns and Rensink (1990), He and Nakayama (1992), Humphreys, Quinlan, and Riddoch 
(1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman (1986), Treisman and 
Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel (1989), and Wolfe and 
Friedman-Hill (1992). The model hereby provides an alternative to recent variations on the 
Feature Integration and Guided Search models, and grounds the analysis of visual search 
in neural models of preattentive vision, attentive object learning and categorization, and 
attentive spatial localization and orientation. 

6. Human Psychophysical Experiments on Boundary Segmentation 

Lesher and Mingolla (1993) showed that illusory contours can be induced along direc- 
tions approximately collinear to edges or approximately perpendicular to the ends of lines. 
Using a rating scale procedure, they explored the relation between the two types of inducers 
by systematically varying the thickness of inducing elements to result in varying amounts of 
"edge-like" or "line-like" induction. Inducers for the illusory figures consisted of concentric 
rings with arcs missing. Observers judged the clarity and brightness of illusory figures as 
the number of arcs, their thicknesses, and spacing were parametrically varied. Degree of 
clarity and amount of induced brightness were both found to be inverted-U functions of the 
number of arcs. These results mandate that any valid model of illusory contour formation 
must account for interference effects between parallel lines or between those neural units 
responsible for completion of boundary signals in directions perpendicular to the ends of 
thin lines. Line width was found to have an effect on both clarity and brightness, a finding 
inconsistent with those models which employ only completion perpendicular to inducer ori- 
entation. Subsequent research reported in Lesher (1993) showed that the BCS could fit the 
data of the Lesher and Mingolla (1993) experiment. 

7. A Link between Brightness Perception, Illusory Contours, and Binocular 
Corticogeniculate Feedback 

As reported in Gove, Grossberg, and Mingolla (1994), many illusory contour displays 
induce apparent brightness along the ends of thin lines. "Brightness buttons" are usually 
described as unnoticed for sinlge lines, but effective in producing the enhanced brightness 
inside the illusory contours induced by Ehrenstein patterns. No satisfactory neural mecha- 
nism for brightness buttons has yet been suggested. We propose that they are consequences 
of corticogeniculate feedback whose primary functional role is to selectively prime monocular 
LGN cells whose activation is consistent with fused binocular activation of cortical VI cells. 
We simulated a model of neural circuitry of LGN and VI. Model LGN relay cells receive 
input from retinal cells, positive feedback from oriented VI cells, and negative feedback from 
LGN interneurons, which also receive cortical feedback. Brightness button signals can be 
generated in two ways consistent with reported physiology: (1) Excitatory feedback from 
cortical end-stopped cells can enhance LGN cell activity near line ends; (2) Net inhibitory 
feedback from long-field cells, modulated by LGN interneurons, can suppress activity in LGN 
cells coding the sides of lines, making brightness contrast at line ends relatively stronger. 
A combination of the two mechanisms has the same properties.   Our research shows that 
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brightness enhancement of illusory figures that are induced at line ends may reflect cor- 
ticogeniculate feedback mechanisms. These mechanisms select monocular LGN cells whose 
activation is consistent with that of the binocular cortical cells that are used to form the 
illusory contours. 

8. Relation of Hyperacuity and Illusory Contour Data 

Lesher's (1993) dissertation contains (among other projects) simulations describing how 
the BCS can fit the illusory contour data of Project 6 in a manner that unifies the treatment 
of hyperacuity data and illusory contour formation, as first described by Grossberg (1987). 
Tradeoffs in network design for optimal spatial resolution and for reconciling long-range 
contextual information with local data are thereby accorded a unified treatment. 

References 

Aks, D.J. and Enns, J.T. (1992). Visual search for direction of shading is influenced by 
apparent depth. Perception and Psychophysics, 52, 63-74. 

Bravo M. and Blake R. (1990). Preattentive vision and perceptual groups. Perception, 
19, 515-522. 

Chelazzi, L., Miller, E.K., Duncan, J., and Desimone, R. (1993). A neural basis for 
visual search in inferior temporal cortex. Nature, 363, 345-347. 

Cohen, A. and Ivry, R.B. (1991). Density effects in conjunctive search: Evidence for a 
coarse location mechanism of feature integration. Journal of Experimental Psychology: 
Human Perception and Performance, 17, 891-901. 

Egeth, H., Virzi, R.A., and Garbart, H. (1984). Searching for conjunctively defined 
targets. Journal of Experimental Psychology: Human Perception and Performance, 10, 
32-39. 

Enns, J.T. and Rensink, R.A. (1990). Influence of scene-based properties on visual 
search. Science, 247, 721-723. 

Gove, A., Grossberg, S., and Mingolla, E. (1994). A link between brightness perception, 
illusory contours, and binocular corticogeniculate feedback. Association for Research in 
Vision and Ophthalmology Abstracts, in press. 

Grossberg, S. (1987). Cortical dynamics of three-dimensional form, color, and brightness 
perception, Parts I and II. Perception and Psychophysics, 41, 87-158. 

He, Z.J. and Nakayama, K. (1992). Surface features in visual search. Nature, 359, 
231-233. 

Humphreys, G.W., Quinlan. P.T., and Riddoch, M.J. (1989). Grouping processes in 
visual search: Effects with single and combined feature targets. Journal of Experimental 
Psychology: General, 118, 258-279. 

Lesher, G.W. (1993). Neural networks for vision and pattern recognition: Boundary 
completion, spatial mapping, and multidimensional data fusion. PhD Thesis, Boston 
University. Ann Arbor: University Microfilms 9401999. 

Mordkoff, J.T., Yantis, S., and Egeth H.E. (1990). Detecting conjunctions of color and 
form in parallel. Perception and Psychophysics, 5, 157-168. 

14 



Nakayama, K. and Silverman, G.H. (1986). Serial and parallel processing of visual 
feature conjunctions. Nature, 320, 264-265. 
Treisman, A. and Gelade, G. (1980). A feature integration theory of attention. Cognitive 
Psychology, 16, 97-136. 

Treisman, A. and Sato, S. (1990). Conjunction search revisited. Journal of Experimental 
Psychology: Human Perception and Performance, 16, 459-478. 
Wolfe, J.M., Cave, K.R., and Franzel, S.L. (1989). Guided search: An alternative to the 
feature integration model of visual search. Journal of Experimental Psychology: Human 
Perception and Performance, 15, 419-433. 
Wolfe, J.M. and Friedman-Hill, S.R. (1992). Part-whole relationships in visual search. 
Investigative Opthalmology and Visual Science, 33, 1355. 

15 



APPENDIX B 

YEAR 2 RESEARCH SUMMARIES 

1. Spatial Pooling and Perceptual Framing by Synchronized Cortical Dynamics 
How does the brain group together different parts of an object into a coherent visual 

object representation? Different parts of an object may be processed by the brain at dif- 
ferent rates and may thus become desynchronized. Perceptual framing is a process that 
resynchronizes cortical activities corresponding to the same retinal object. A neural network 
model was developed that is able to rapidly resynchronize desynchronized neural activities. 
Model properties quantitatively simulate perceptual framing data, including psychophysical 
data about temporal order judgments and the reduction of threshold contrast as a function 
of stimulus length. The model also exhibits better synchronization in the presence of noise 
than without noise, a type of stochastic resonance, and synchronizes robustly when cells that 
represent different stimulus orientations compete. The model utilizes fast long-range coop- 
erative feedback that interacts with slow competitive feedback from inhibitory interneurons. 
Such a model has earlier been used to explain data about illusory contour formation, texture 
segregation, shape-from-shading, 3-D vision, and cortical receptive fields. The model hereby 
shows how all these data may be understood as manifestations of a cortical process that can 
rapidly resynchronize image parts which belong together in visual object representations. 

2. Synthetic Aperture Radar Processing by a Multiple Scale Neural System for 
Boundary and Surface Representation 

An algorithm based on an improved Boundary Contour System (BCS) and Feature 
Contour System (FCS) neural network vision model is developed to process images containing 
range data gathered by synthetic aperture radar (SAR) sensor. BCS/FCS processing makes 
structures such as motor vehicles, roads, and buildings more salient and interpretable to 
human observers than they are in the original imagery. Early processing by ON cells and 
OFF cells embedded in shunting center-surround networks normalizes input dynamic range 
and performs local contrast enhancement. Combining ON cell and OFF cell output in the 
BCS to define oriented filters overcomes complementary processing deficiencies of each cell 
type and improves sensitivity to image contours. The oriented filters output to stages of 
short-range competition and long-range cooperation that segment the image into regions by 
cooperatively completing and regularizing the most favored boundaries while suppressing 
image noise and weaker boundary groupings. Boundary segmentation is performed by three 
copies of the BCS at small, medium, and large scales, whose interaction distances covary 
with the size of the scale. Filling-in of surface representations occurs within the FCS at 
each scale via a diffusion process. Diffusion is activated by the normalized FCS inputs and 
restricted to the compartments defined within each BCS boundary segmentation. The three 
scales of surface representation are then added to yield a final multiple-scale output. 

3. Formation of Cortical Maps of Ocular Dominance and Orientation Columns 

Three computational rules are sufficient to generate model cortical maps that simulate 
the interrelated structure of cortical ocular dominance and orientation columns: a noise in- 
put, a spatial band pass filter, and competitive normalization across all feature dimensions. 

16 



The data of Blasdel from optical imaging experiments reveal cortical map fractures, singu- 
larities, and linear zones that are fit by the model. In partiuclar, singularities in orientation 
preference tend to occur in the centers of ocular dominance columns, and orientation con- 
tours tend to intersect ocular dominance columns at right angles. The model embodies a 
universal computational substrate that all models of cortical map development and adult 
function need to realize in some form. 

4. A Neuron Model with Variable Ion Concentrations 

Voltage is the central focus of most models of the single neuron. Recently interest in long- 
term potentiation (LTP) has surged, due to its linked to learning. It has been shown that 
LTP is accompanied by an increase of the internal calcium concentration. Prior models have 
included provision for variable calcium concentrations, but since the calcium concentration 
in these models is typically very low, it has a negligible effect on the membrane potential. 
In the present model all ion concentrations are variable due to ionic current and due to ion 
pumps. It is shown that this significantly increases the complexity of neural processing, and 
thus variable ion concentrations cannot be ignored in neurons with high firing frequency, or 
with very long depolarizations. 

5. A Multi-Scale Network Model of Brightness Perception 

A model is developed to account for a wide variety of difficult data, including the classi- 
cal phenomenon of Mach bands, low- and high-contrast missing fundamental and nonlinear 
contrast effects associated with sinusoidal luminance waves. The model builds upon previ- 
ous work by Grossberg and colleagues on filling-in models that predict brightness perception 
through the interaction of boundary and feature signals. Simulations of the model imple- 
ment a number of refinements already described in the development of Grossberg's (1987, 
1994) Form-And-Color-And-DEpth (FACADE) theory, which though conceived as part of 
the theory, were not implemented in the simulations of Grossberg and Todorovic (1988). 
These include: (a) ON and OFF channels with separate filling-in domains; (b) multiple 
spatial scales; (c) revised computations for simple and complex cells; and (d) boundary com- 
putations that engage a recurrent competitive circuit. Simulations of the present system of 
equations account for human's perception of a wide variety of stimuli, including ones whose 
brightness contains shallow spatial gradients. 

6. Models of Motion Perception 

This encyclopedia article reviews the major historical data on human visual motion 
perception and describes classical attempts to model motion detection. It then describes 
recent developments in a more comprehensive model, called the Motion Boundary Contour 
System, proposed by Grossberg and colleagues. 
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